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Abstract--The disturbance velocity fields due to translational and rotational motions of an ellipsoid 
in a uniform stream, constant vorticity and constant rate-of-strain, required in fundamental studies 
of behavior of suspensions, have been obtained by the singularity method. These solutions extend 
earlier solutions for prolate spheroids. Although equivalent solutions problems were obtained by 
Oberbeek, Edwardes and Jeffery by separation of variables in ellipsoidal coordinates, the singularity 
solutions are far more simple in form. Other significant results obtained by the singularity method 
include the exposition of the unified structure shared by the three boundary value problems and 
the construction of new forms of the Faxen laws for ellipsoids through application of the reciprocal 
theorem. The disturbance solutions and Faxen laws, the basis for Smoluchowski's method-of- 
reflections technique, are used to calculate hYdrodynamic interactions between two or more arbitrarily 
oriented ellipsoids. In particular, mobility problems are solved directly to order R -s, where R is 
the eentroid-to-centroid separation between the ellipsoids. 

1. INTRODUCTION 

Suspensions of nonspherical particles exhibit non-Newtonian behavior through the inter- 
action between the flow field and Brownian motion (Giesekus 1962; Brenner 1972; Hinch 
& Leal 1972). However, rigorous derivation of the material functions to date have been 
restricted to the dilute limit, partly because of the lack of information on multiparticle 
hydrodynamic interactions. Existing information on particle-particle interactions is limited 
to interactions between prolate spheroids in certain geometries such as large particle-particle 
separations (Wakiya 1965) or special configurations (Gluckman et al. 1971; Liao & Krueger 
1980). Hydrodynamic interactions between oblate spheroids, despite widespread occurrence, 
e.g. the disk-shaped kaolinite minerals in clay/water suspensions, have received even less 
attention. 

The first steps towards a method-of-reflections solution of multiellipsoid, hydrody- 
namic-interaction problems are presented here. Our primary goal is the solution of problems 
where the rigid-body motion of the particles are to be determined, given the external forces, 
torques and the ambient velocity field. Defined by Batchelor (1976) as mobility problems, 
these problems appear most frequently in the hydrodynamic interaction terms of the rheo- 
logical theories mentioned above. 

Our faith in the method-of-reflections approach is based on the experience with spherical 
particles where it is known that one can solve the mobility problems accurately with 
surprisingly small number of reflections (see, for example, Felderhof 1977; Jeffery & Onishi 
1984). This conclusion appears to hold as well for prolate spheroids. Kim (1985a) has 
determined the sedimentation velocities of two arbitrarily oriented spheroids accurate to 
order R -5, where R is the centroid-to-centroid separation, using only two reflections beyond 
the isolated-particle solution. 

The method of reflections used here follows Smoluchowski (1911). Readers who are 
not familiar with the details of this technique are referred to the discussion in Happel & 
Brenner (1973). The method is summarized as follows. The disturbance velocity field gen- 
erated by a test particle (call this particle-a) will modify the velocity field seen by other 
particles (for example, at particle-/3). We call the disturbance velocity generated by/3 in 
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response to the disturbance from a as the "reflected field at ft." This process can be 
continued indefinitely, with each reflected field as the incident field at higher order reflections. 

The disturbance velocity field of an isolated particle can be considered a reflection with 
the ambient velocity field as the incident field. We call this the zeroth reflection. The first 
reflection generates reflected fields at each particle with the zeroth reflection fields from all 
other particles as the incident fields. For an M-particle suspension, the Nth reflection 
generates M ×  (M- 1) # reflected fields from M ×  (M- 1) N-1 incident fields. 

We shall represent the reflected field by a multipole expansion with the multipole 
moments related to the incident field by Faxen laws (Rallison 1978). This approach is direct 
and simple but its success hinges upon the availability of the Faxen laws for the lower 
order moments. 

Brenner (1964) has shown, using the Lorentz (1907) reciprocal theorem, that Faxen 
laws can be constructed if one knows the stress distribution in the conjugate velocity 
problem; i.e. the solution for translating ellipsoids, rotating ellipsoids and ellipsoids in a 
rate-of-strain field are required for the Faxen laws for the force (Brenner 1964), torque 
(Brenner 1964) and stresslet (Rallison 1978). Furthermore, if the conjugate solution is 
expressed in terms of the fundamental solution of the Stokes equation (also known as the 
Stokeslet), then as noted by Hinch (1977), Brenner's (1964) procedure reduces to the simple 
statement that the Faxen law for the moment has the same functional form as the conjugate 
velocity field. An explicit statement and proof is given in Kim (1985b). Therefore, the bulk 
of the present work is directed towards finding such singularity solutions for ellipsoids. 

The singularity method has been used by Chwang & Wu (1974, 1975) to solve exactly 
the translational, rotational and rate-of-strain problems for prolate spheroids. These solu- 
tions are the conjugates for the Faxen force, torque and stresslet law. In their introduction, 
they review the history of the singularity method, including the pioneering works of Lorentz 
(1892), Oseen (1927) and Burgers (1938). Other early applications of the singularity method 
are the works on slender-body theory by Hancock (1953) and Tuck (1964). Less has been 
done on "thin-body" theory but recent results are available for thin oblate bodies of 
revolution, e.g. Barshinger & Geer (1984). As stated by Chwang & Wu (1975), "through 
these investigations, the relative simplicity and effectiveness of the (singularity) method have 
gradually become more recognized." However, the primary difficulty is that a priori, one 
does not know the type of singularities and their distributions. In fact, one objective of the 
work of Chwang & Wu (1974, 1975) and Chwang (1975) was the accumulation of a class 
of exact solutions by the singularity method. Section 2 of the present work adds the general 
ellipsoidal shape to this collection. 

The organization of this paper is as follows. In section 2, the ellipsoidal solutions of 
Oberbeck (1876) and Jeffery (1922) are reexpressed as singularity solutions, i.e. in terms of 
the fundamental solution of the Stokes equation. (Edwardes' (1892) work is contained within 
Jeffery's solution.) The form of the singularity solution is surprisingly simple. In addition, 
the singularity method reveals a unified structure which is not apparent in the traditional 
expressions in ellipsoidal harmonics. This structure suggests new forms for the velocity 
representations for nonspherical particles in capillaries and other bounded domains. The 
special case of oblate and prolate ellipsoids of revolution, including a complete discussion 
of the resistance tensors, is provided in the appendixes. Section 3 is a discussion on new 
forms of the Faxen laws for the force, torque and stresslet on an ellipsoid with applications 
to the method of reflections for two ellipsoids. The hydrodynamic interactions between two 
sedimenting oblate spheroids have been determined and are compared with the results 
obtained in Kim (1985a) for prolate spheroids. 

2. THE SINGULARITY SOLUTION FOR ELLIPSOIDS 

In this section, we will derive the singularity solution for an ellipsoid in Stokes flow. 
We will start by describing the classical solution. The derivation is outlined in appendix A. 

2.1. Description 
Consider an ellipsoid with semiaxes of lengths a, b and c, with a > b > c. The ellipsoid 
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surface satisfies 

X 2 y2 Z 2 
a2 + ~ + ~ =  1 [2.1] 

The governing equations for the velocity, v, and pressure, p, are the Stokes equations for 
low-Reynolds-number flow, 

- - V P +  P,V 2 v = O  , [2.2] 

where/x is the viscosity, and the equation of continuity for incompressible flow, 

V "  v = 0 [2.3] 

The boundary conditions are: 
(1) On the ellipsoid surface, v is equal to the particle's rigid-body motion, 

v = U + t o × x  [2.4a] 

(2) As lx[ -~ oo, v approaches the ambient velocity, i.e. 

v--'v = = U ® + f~= × x + I : . x  , [2.4b] 

where U and to are the particle translational and rotational velocities and U% fZ ® and I: 
are the uniform stream, ambient rotation and rate-of-strain. From [2.4b], it follows that 
N ~ is one-half of V × v %  the ambient vorticity. 

The solution to this problem can be expressed using a distribution of I(x-x')/(8~r/x), 
the fundamental solution of the Stokes equation. I, the Oseen-Burgers tensor given by 

and its pressure field, 

1 1 
- 8 0 + - T x i x j  , with r = Ixl I ~ =  r 

F "  
[2.5a1 

2/x [2.5b1 p j  = r---~xj , 

satisfy the Stokes equation with point forcing, 

_~--~P + ~V2-r,~ = _ 8~r/~8oS(x)  
Xi 

a x i 

and the continuity equation, 

- 0  

(see Happel & Brenner 1973 Chap. 2). 

with 

It is now claimed that the disturbance velocity field, v - v %  can be written as 

2 

= 4 n - 2  V , 

[2.6a] 

[2.6b] 

[2.7] 
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(2n-l) q2n-3 
f~)(x,y) -- 27r---a-Eb'-~ 

x2 y21"2 
q ( x , y ) =  1 a2 -~el ' 

= ( a 2 - c 9  "2 , bE = ( b 2 - c 2 )  

L(~) = [ - F  if n = 1, 
S ' v + T ' v  i f n = 2  

[2.8a-e] 

The following is a description of the terms which appear in the solution. 
First consider L (~), the vector operator. For n = 1, L 'l). I = - F  • I, the Stokes monopole 

field, where F is the force exerted on the ellipsoid by the fluid, i.e. 

f o" • n dA 

For n =2 ,  L (2) • I = [ (S+T)  • V] • i is the Stokes dipole field, where S and T are the 
symmetric and antisymmetric parts of the stress-dipole on the ellipsoid, 

f ( o ' .  n)x  d,4 

S is called the stresslet in Batchelor & Green (1972)2 T is related to the torque exerted 
on the ellipsoid by the fluid, by the usual relation between antisymmetric dyadics and 
pseudovectors, 

1 
r,j = E,jkrk 

E(x ' , y ' ) ,  the integration domain, is the interior of the fundamental ellipse, 

x__22 y2 
a~ + b'--~E = 1, z = O  

The fundamental ellipse is the degenerate elliptical disk in a family of confocal ellipsoids. 
The major and minor semiaxes of the fundamental ellipse, aE and bE, are given in [2.8c].* 
The density function fn)(x',y') in E(x',y') is physically the surface singularity distribution 
for an elliptical disk, as can be seen by looking at the limit c = 0 in [2.7]. 

The function q (x ,y)  which appears in j~) plays a prominent role in the potential theory 
for ellipsoidal particles (see Miloh 1974). In fact, in potential theory, q- l  is the requisite 
charge distribution over the fundamental ellipse which generates ellipsoidal equipotential 
surfaces. Chwang & Wu (1975) have noted that the distribution of Stokes multipoles in 
low-Reynolds-number problems is similar to the distribution of multipoles in analogous 
problems in potential theory, except for the presence of additional degenerate multipoles 
(the ~2 term) in [2.7]. The presence of such quadrupoles (or potential doublet) when n = 1 
and octupoles when n = 2  in [2.7] are consistent with (and, in fact, extend) the rules stated 
by Chwang & Wu (1975) for prolate spheroids. 

To complete the solution, we must relate F, T and S in terms of the knowns, U ~ -U,  
[ l~ - to  and E. These relations are found in Oberbeck (1876) and Jeffery (1922), some of 
which are shown below. Expressions for other components can be obtained by the well 

t The isotropic part of the symmetric stress-dipole usually has no physical significance. Batchelor & Green 
(1972) remove this degree of freedom by setting the trace of the stresslet to zero. 

:~ Hobson (1955) and Miloh (1974) use k and (M-hZ) In in place of our aE and bE. 
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known mnemonic of cycling the subscripts x, y and z, and 
and c: 

473 

the dependence on a, b, 

F~, = 16zrp, abc(Xo + a0a2)-l( U~ - Ux), [2.9] 

16 
Tx = -~  ~'p, abc(b 2/3o + cZyo) -1 [( b2 + c2)(l~I - to~)  

1 
+ (b: - c0 - (E~+E, . . ) I  

2 : - " "  

16 
t t  t t  t t  S= = ' ~  7r#abc (2ao E=-/3o Eyy-yo E=) k/..a.o T 0/"/~tl~flt + I0v"0'~fll~t' l~"0ba'0 ]'l-~ttl'~tt~-I 

8 
S~y = Sy~ = -~rrl~abc(aZao + b2/3o) -1 × [ (a2-b~)( l )7-c%) 

[2.10] 

[2.11a] 

+ (,~o+/3o)b,6] -1 ~ (E~,+E,~)] 
2 

Here, Xo, a0,/3o, Yo, a~,/3~, y~, a~ t,/3, and y~t are constants which are obtained by evaluating 
the following harmonic functions at h=0t :  

[2.11b] 

X(X) = abc [P(h)]- I  d X , 

a(h) = a b c  [(a2+k)P(k)] -1 d~ 

[2.12] 

[2.13] 

with 

P(X) = [ ( a :  + X)( b ~ + x)( c ~ + x)] 1,~ 

The lower limit of the definite integral, h(x , y , z ) ,  is the positive root of 

x 2 y2 Z2 
a2+----- ~ + ~ Jr- C2..~_ h -- 1 

The functions/3(~.) and y(k) are obtained by sucessive cycling of the dependence on a,  b 
and c. The ' functions are defined by 

a'(h)  = ( h - / 3 ) / ( b ~ - c  2) , [2.14] 

with 13, (h) and y(h) defined by successive cycling of the dependence on a,b and c (and 
therefore also, ct,/3, and y). The "functions are defined by 

att(k) = ( b 2 / 3 - c 2 y ) / (  b 2 -  c 2) , [2.15] 

with fit(h) and y"(k) defined by successive cycling of the dependence on a, b and (and 
therefore also, a , /3  and y). This completes the description of the singularity solution. For 
the special case of ellipsoids of revolution, these constants are given in the appendix along 
with a complete description of the resistance tensors. Asymptotic expressions for the sphe- 
roidal resistance functions are also provided for slender, flat and near-sphere limits. 

t- ct, 13 and 3~ are as defined in Happel & Brenner (1973) and differ from Jeffery's definition by a factor of 
(abc). This also holds for the ' and " functions. 
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In summary, the basic results are: 
(1) The disturbance velocity field for a translating ellipsoid (or a fixed ellipsoid in a 

uniform stream) is generated by a distribution of Stokeslets and potential doublets over the 
fundamental ellipse. 

(2) The disturbance fields for a rotating ellipsoid (or a fixed ellipsoid in a constant 
vorticity field) and for a stationary ellipsoid in a rate-of-strain field are generated by a 
distribution of rotlets, stresslets and Stokes-octupoles over the fundamental ellipse. 

(3) For prolate spheroids, the fundamental ellipse degenerates into a line segment from 
one focal point to the other and the singularity solutions of Chwang & Wu are recovered. 
For oblate spheroids, the fundamental ellipse degenerates into a circular disk with a diameter 
equal to the focal length of the ellipse of rotation. 

In all cases, the density functions for the dominant singularities are similar to those 
which appear in analogous problems in potential theory. Readers interested in the derivation 
of the key expression, [2.7], are directed to appendix A. 

3. F A X E N  L A W S  F O R  E L L I P S O I D A L  P A R T I C L E S  

A correspondence between singularity solutions and Faxen laws follows as a corollary 
of the Lorentz (1907) reciprocal theorem (Brenner 1964; Kim 1985b). The new forms of 
the Faxen laws obtained in this manner are more useful than earlier infinite series expansions 
derived by Brenner (1964) and Rallison (1978) when the higher order derivatives of the 
velocity field are not available. 

The linear relations between the drag, torque and stresslet on the ellipsoid and the 
ambient field can be expressed as 

F,.= p,A u ( U =-  U)j , [3.1] 

Tt = p, Cg (ll®-~)j + p, Huk.Ejk , [3.2] 

Sij = p, Mukt Ekt + tXHkiy (ll=-~), , [3.3] 

where A, B, O, H and M are material tensors whose components may be deduced from 
[2.9], [2.10] and [2.11]. The Faxen relations are generalizations of [3.1], [3.2] and [3.3] since 
they give F, T and $ in any ambient velocity field that satisfies the Stokes equations over 
the unbounded domain. We apply the reciprocal theorem to the singularity solutions as 
shown in Kim (1985b) to obtain the following forms of the Faxen laws for the force, torque 
and stresslet, 

F = p,A • ) (x' ,y ')  1 + ~ c2q2~7 2 V,o(X,) dx'dy' -/x,O,. U , [3.4] 
E 

1"1 = , ] r r  , 
t. g 

[3.51 

+lxH'f f f (2)(x ' ,y ' )  1 + ~c2q2V2}e®(x')dx'dy' , 
g 

Su= p, Muk~f  f(2)(x',y') l + ~ceq2v2}e~(x')dx'dy' 
E 

ss I ,36, + ~I-Iko f(e)(x',y') ~ V x v  (x') - ~ kdx'dy' 
E 

For force-free and torque-free particles, these results can be rearranged into the fol- 
lowing expressions for the translational velocity, rotational velocity and stresslet: 
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e i [3.8] 

+(C-O~akefff2~(x',y')ll+~c2q2V2~ e~(x')dx'dy' , 

Su = tx[m~k' - nmij( C-l)mnnnk'] [3.9] 

/ ' 1 2 2  21 × ffs,2, (x ' ,y ' ) l  + -6cq v l e~ (x ' )dx 'dy '  
E 

Equations [3.4] to [3.9] reduce to the appropriate Faxen laws for prolate spheroids derived 
by Kim (1985b) in the limit as b --+ c. 

Thus the force, torque and stresslet on an ellipsoidal particle in an ambient flow field 
v ~ are obtained by integrating the ambient velocity, vorticity and rate-of-strain (respectively) 
over the fundamental ellipse, weighted by density functions which appear in the singularity 
solution of the conjugate boundary value problem. 

3.1. Comparison with existing Faxen laws 
It is now appropriate to consider the advantages and disadvantages of the Faxen 

relations derived here in comparison to existing forms which have been derived by Brenner 
(1964) and Rallison (1978). For the general case, i.e. that of a particle of arbitrary shape, 
the Faxen expressions are integrals of the product of the appropriate ambient field and the 
stress polyadic of the conjugate velocity problem. The integration is performed over the 
surface of the particle. 

This general result can be greatly simplified for particles of simple geometry. For 
spheres and ellipsoids, the surface integrals can be performed analytically owing to the 
simple form of the conjugate stress polyadic--after expanding the ambient velocity field 
in a Taylor series about the particle center. For spheres, the series truncates after at most 
two terms while for nonspherical ellipsoids, the higher order terms do not vanish. However, 
the latter expressions can be expressed in a compact form by using symbolic operator 
notation (see Brenner 1966; Brenner & Haber 1983). Thus for ellipsoids, one has a choice 
between two expressions of the Faxen law: an infinite series in the ambient field and its 
derivatives, with all fields evaluated at the particle center, or the expressions in section 2 
with at most two terms (as in the spherical case), but with the field variables integrated 
over the fundamental ellipse. 

If one requires a few leading order terms in a method-of-reflections calculation of 
hydrodynamic interactions between particles, the series expansion is a convenient form, 
since the ambient (i.e. incident) field is known analytically. As more terms are retained, it 
becomes more difficult to manipulate the higher order terms. Furthermore, one can envision 
situations where the ambient field is not given by an analytical expression. For example, 
the ambient field may be the result of a finite element or finite difference calculation. In 
such situations, the veracity of higher order derivatives become suspect and one must turn 
to the integral forms. Then, instead of using the general expression with the integral over 
the particle surface, one can employ the simpler procedure of integrating over the funda- 
mental ellipse. 

Finally, we can derive the series form directly from the integral form over the fun- 
damental ellipse by taking the Taylor expansion of the ambient field at each point on the 
fundamental ellipse. The algebra can be simplified by first showing the equivalence for 
elliptical disks, taking advantage of [26] in Brenner (1966). (The "particle surface" of an 
elliptical disk are the "top" and "bottom" sides of the fundamental ellipse.) The result for 
a general ellipsoid then follows because Brenner's D 2 operator can be decomposed as 
D2(c=0) - c2V 2 and since V4v= 0. 
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3.2. Sedimentation of two ellipsoids 
We proceed to solve the sedimentation problem for two ellipsoids by the method of 

reflections as an application of the general results of section 2. The zeroth order solution 
at particle-a is simply the velocity field generated by an isolated ellipsoid subject to an 
external force F~. For example, at ellipsoid 2, 

U~ o) = (/x,O,)-'. F2 , [3.10a] 

vz=F,~.fff(1)(x',y'){l+~e2qEVEl|(x'-x')/(8rrlx)dx'dy' [3.10b] 
E 

(Each ellipsoidal particle in the suspension has its own fundamental ellipse and constants. 
This dependence is not expressed in order to simplify the notation.) The contributions to 
the sedimentation and angular velocities on ellipsoid 1 from the first reflection, U (l) and 
tot~),are obtained by using v2(x)~ as the incident field in the Faxen laws for the translational 
and rotational velocities on a force-free and torque-free ellipsoid. The leading term in the 
reflected field, v2~, is a Stokes-dipole field, 

J'j" 1 v2,(x) = (S~') .V) • f<a)(x',y') 1+-~c2q2V21 I(x-x')/(8~'/x) dx'dy' , [3.11] 
E 

with the stresslet determined from the appropriate Faxen law, [3.9]. The first reflection at 
ellipsoid 2 follows in a similar fashion, and the expression for the analogous dipole field, 
v12, is obtained by switching the particle labels. 

The contributions to the sedimentation and angular velocities on ellipsoid 1 at the 
second reflection are obtained by using v~2 as the incident field in the Faxen laws. The 
method of reflections result for U~ is now accurate to O (R-5). An error of O (R -6) comes 
from the neglected quadrupole fields in v12 (for which the Faxen laws are as yet unavailable). 
Thus the solution for ellipsoids has been developed to the same level as that presented for 
prolate spheroids in Kim (1985b). 

It should be clear from the steps used at the first and second reflections that in general, 
at higher order reflections, the contribution to the sedimentation velocity of ellipsoid ct 
from the n th multipole from ellipsoid/3 is of the form 

L~").fffffo)(x'~)f,,(x'~) l+(~c2q2+c2~q2~/(4n-2))V a} 
e,, e~ 

I(x=-x})/(8~r~) d &  d,4 a , 

where L~ n) is the appropriate multipole moment on ellipsoid /3 obtained at the previous 
reflection. An analogous procedure can be followed to determine the contribution to the 
angular velocity. 

In actual computation, the integrals over the fundamental ellipses were parametrized 
with the elliptic coordinates 

x = a e p c o s 6 ,  y = b e p s i n ~ b  

Three-point Gaussian quadratures were adequate for the p-integration (the Gaussian quad- 
ratures were performed after the change of variable, g2 = 1 _p2). Simpson's rule was used 
for the 6-integration. 

We now consider two inclined oblate spheroids settling with their axes lying in a 
common vertical plane (figure 1). At all times, the geometry is specified by the dimensionless 
center-to-center separation, R/a and 0, the polar angle* between d~ and the x-axis. At all 

t This 0 differs from the one used in Kim (1985a) for prolate spheroids by 7r/2 in order that the same value 
of 0 in the two problems yields identical cross sections in the x - z  plane. 
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Z 

R/a 

Figure 1. Mirror symmetric geometry of two inclined spheroids with their axes in a common 
plane. The solid and dashed axes are the symmetry axes for oblate and prolate cases, 

respectively, with d, denoting the axes for both cases. 

but small separations, the two-reflection solution provides accurate answers. The conver- 
gence behavior is similar to that reported in Kim (1985a) for prolate spheroids. 

The evolution of the geometry is caused by the anisotropy in the mobility tensors and 
the rotation of the spheroids about the y-axis (which for oblate spheroid is coincident with 
a major principal axis). Since the mobility is less in the axial than in the transverse direction, 
an inclined spheroid drifts horizontally as it settles. At the same time, the spheroid rotation 
changes the orientation of the axis. These two effects, under the quasi-steady assumption, 
are governed by the dimensionless equations (with R / a  rewritten now as R) 

= o y ( R , O )  , [3.12] 

J~ = - 2 U x ( R , O )  [3.13] 

Figures 2 and 3 show the evolution of R and 0 as determined by integrating [3.12] 
and [3.13] with a fourth order Runge-Kut t a  routine. The solid lines are the new results 
for oblate spheroids and the dashed lines are the earlier results for prolate spheroids. The 
plots include the curve 

R = 2(1 -- e2cos20) ~ , 

for contact between the two spheroids. 
If the orientation trajectories are followed from 0 = 0  (horizontally oriented oblate 

spheroids and vertically oriented prolate spheroids) the curves in figures 2 and 3 fall into 
two groups, depending on the initial value of R. For both oblate and prolate spheroids, if 
R (at 0 = 0 )  exceeds a critical value, then the particles monotonically drift apart. Their 
orientations approach asymptotically a limiting value of 0, since at large separations to goes 
to zero. However, for initial values of R less than the critical value, the rotational motion 
is sufficiently large to cause the particles to rotate beyond 0 = ¢r /2, whereafter, the particles 
drift back towards each other along trajectories which are mirror images of the outward 
trajectories. The separatrix which starts at the critical value of R has the asymptote 0 ~ =  
7r / 2 (horizontal orientation). 

At large values of R, the trajectories can be approximated accurately by taking just 
the leading terms on the right-hand-side of evolution equations [3.12] and [3.13]. These 
approximate equations have exact solutions, 

oblate spheroids: 
1 1  1) 

R0 -- 3 - ~ (cos 20 - cos 200), 
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0.5 

0.4 

0.3 

0.2 

0.1 

I I I I 

0.0 1 2 3 4 5 6 7 8 9 i0 
R/a 

Figure 2. Evolution of orientations and separation between two spheroids, aspect ratio = 2, 
settling with 0 and R as in figure 1. The solid and dashed trajectories are for oblate and prolate 

spheroids, respectively. 

1 1 
prolate spheroids: 

R Ro 

1 
- (~ ) (1  - ~-~)(cos 20 - cos 20o). 

The resistance functions X A and ya are defined in appendix B. 
The influence of the aspect ratio is seen by comparing figures 2 and 3 for aspect ratios 

of 10 and 2, respectively. As the aspect ratio is reduced, the region occupied by periodic 
trajectories enlargens and the trajectories straighten into the vertical lines of the spherical 
case. Finally, at a fixed aspect ratio, stronger hydrodynamic interactions between oblate 
spheroids result in a far greater region of periodic trajectories. 
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Figure 3. Evolution of orientations and separation between two spheroids, aspect ratio = 10, 
settling with 0 and R as in figure 1. The solid and dashed trajectories are for oblate and prolate 

spheroids respectively. 
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N O T A T I O N  

resistance tensor for ellipsoids. 
largest semiaxis of ellipsoid. 
intermediate semiaxis of ellipsoid. 
resistance tensor for ellipsoids. 
smallest semiaxis of ellipsoid. 
spheroid orientation vector. 
rate-of-strain tensor. 
eccentricity of the generating ellipse. 
force exerted by the fluid on the particle. 
density function in singularity distributions. 
gravitational vector. 
resistance tensor for ellipsoids, rank = 3. 
Oseen-Burgers tensor. 
vector operator in singularity solution. 
resistance function for ellipsoids, rank =4. 
unit vector normal to the surface. 
pressure. 
density function in singularity distributions. 
center to center separation between two ellipsoids. 
radial coordinate from particle center. 
symmetric part of the stress-dipole (stresslet). 
torque exerted by the particle on the fluid. 
antisymmetric part of the stress-dipole. 
particle translational velocity. 
fluid velocity. 
resistance function for spheroids. 
Cartesian coordinate. 
position vector. 
point on the fundamental ellipse. 
resistance function for spheroids. 
Cartesian coordinate. 
resistance function for spheroids. 
Cartesian coordinate. 

Greek letters 
O~s.~O,u.O 

Bo,B;B" 
70,7;7" 
8 

0 

P 
O" 

X 
ll 
II 

OJ 

Constants in Jeffery's (1922) solution. 
Constants in Jeffery's (1922) solution. 
Constants in Jeffery's (1922) solution. 
identity tensor. 
alternating tensor. 
polar angle for spheroids. 
fluid viscosity. 
ellipsoidal coordinate (p constant gives ellipsoidal surface). 
stress tensor. 
ellipsoidal harmonic. 
Dirchlet potential. 
angular velocity of fluid. 
particle angular velocity. 

Subscripts 
1,2 
E 
i , j , k , l , . .  
(n) 

labels for particles. 
refers to the fundamental ellipse 
indices used in the Einstein summation convention. 
label for multipoles in the singularity solution. 
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Superscripts 
(n) label for the nth reflection. 

ambient field. 
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APPENDIX A 

Derivation of the singularity solution 
We show here that the singularity solution, [2.7], is equivalent to the solutions obtained 

by Oberbeck (1876) and Jeffery (1922), i.e. the solutions obtained by separation of variables 
in ellipsoidal coordinates. 

The proof is simple once certain integral representations for X(h) and fl(h), the Dirchlet 
gravitational potential for a solid ellipsoid, are established. The Dirchlet potential is de- 
fined by t 

fx~ X(a__7__~+ h y2 z 2 ) d X  
f~(h) = zrabc + 62 -+ X .-t c2 + X 1 --if- [A.1] 

The lower limit of the definite integral, h(x,y,z), is as defined earlier. The required integral 
representations are 

E 

 =-4 rabc f f ' , [A.3] 
E 

with ~l) given by [2.8a]. 
The integral representation for X is derived in Miloh (1974) in the more general setting 

of representation theorems for external Lame functions,: F~'. The harmonic X is related to 

tThis  definition is the same as in Happel & Brenner (1973) but differs from Jeffery's by a factor of ~abc.  
:~ These functions are defined in the extensive treatise by Hobson (1955). 
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the Lame functions by X(X) = 2abcF°o (p) with p2=a2 +h. The integral representation for 
l~ follows from the representaion for X. From Kellogg (1953), 

f01 l~ = --2zr X(h;u)/u du [A.4] 

The parameter u is introduced by replacing a, b, and c in the expression for X with ua, ub, 
and uc. According to [A.4], f~ is a superposition of X functions for a family of ellipsoids 
imbedded inside the original ellipsoid. This representation is one way of demonstrating that 
l~ is a harmonic. The desired result, [A.3], can be obtained by inserting [A.2] into [A.4] 
and performing the u-integration first. 

We are now in a position to recover Oberbeck's solution as given by [5-11.8] in Happel 
& Brenner (1973) for an ellipsoid in a uniform stream (streaming in the x-direction with 
velocity U~): 

a2 2x--1~2"~-~ + U~(Xo+ao a2)-I ( xaX  -- X ) +  U~ 
vx= --2---~ U~(X°+  aoa)  0x 2 \ ax 

a 2 a2~ aY 
= _ + - '  

zTr axay oy 

= _ a _ _ _  2 v~ 2Ir U°°(X°bct°a2)-I a2~ -t- U®(Xo+Ctoa:) -z x aX 
axay az 

[A.5] 

The distribution of Stokeslets, /if(x--x'), in the singularity solution can be decom- 
posed as 

0r_i ! ) ' ar -1 
' -- 8ij -t- x.i Oxi' with r = ~x--x' I [A.6] = xj  0x ,  

The x-term in Oberbeck's solution is obtained by taking the first term on the right-hand- 
side of [A.6] and recognizing that the integral over the fundamental ellipse in [2.7] is 
precisely the integral representation of X, [A.2]. It is not difficult to show that the integral 
of the remaining term on the right-hand-side of [A.6] over the fundamental ellipse is related 
to the second derivatives of IL i.e. 

f ' °-L (ix  l) = - 47rabc fo) (x',y') x j  axi axiaxj  [A.7] 

with the temporary notation, a l=a ,  a2 = b and a3 =c.  This completes the transformation of 
the Stokeslet distribution. 

The potential doublet satisfies 

V21 = _ 2 V V ( r - l )  

for r :J= 0. Therefore, the integral of the potential doublet over the fundamental ellipse in 
[2.7] is just the second derivative of the integral representation for I~. Thus the f~-terms in 
Oberbeck's solution are obtained by combining [A.7] and the distribution of potential 
doublets in [2.7]. 

By a similar albeit more tedious procedure, one can relate the n = 2 case in the singularity 
solution to Jeffery's (1922) solution for rotation and rate-of-strain. Readers are referred to 
the (1922) paper for the details of the ellipsoidal-coordinate solution. In his [18], [19] and 
[20] for the velocity components, the terms containing the constants A, B, C, F, F ' ,  G, G ', 
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H and H '  may be rearranged into the stresslet and rotlet distributions of [2.7] plus octupoles 
of strength (aj2-c2). After some lengthy algebraic rearrangement,* these octupoles and the 
terms containing the constants R, S, T, U, Vand Win the (1922) paper (these terms satisfy 
vEv=0) reduce to the octupoles in [2.7]. 

APPENDIX B 

Collection of results for ellipsoids of revolution 
The scalar coefficients which arise in the solution of the resistance problems for ellipsoids 

of revolution are scattered throughout the literature. Although Oberbeck (1876) and Jeffery 
(1922) contains all of the requisite information on resistance functions for the general 
ellipsoid, some algebraic rearrangement and reduction are required. Here, the complete set 
of resistance coefficients for both prolate and oblate spheroids are furnished for the con- 
venience of the reader in tables 1- 3. References are given for those functions which can be 
found elsewhere. The information is grouped as follows: 

(1) The expressions for the ellipsoidal constants, a0, /30,...y~ in the limit of oblate and 
prolate spheroids, are given in table 1. 

(2) The definitions of and expressions for the eight resistance functions which relate the 
force, torque and stresslet on oblate and prolate spheroids to the net translation, net rotation 
and ambient rate-of-strain are given in table 2. Following Chwang & Wu (1975), the shape- 
dependence is expressed in terms of the eccentricity, e, of the generating ellipse. 

(3) In table 3, asymptotic formulae are given for all eight functions in the limit as e--, 0 
(near-spheres) and e ~ 1 (flat disks and thin needles). These formulae were obtained by using 
MACSYMA*, the symbolic manipulation language. 

The notation for the resistance functions follows that used by Jeffery & Onishi (1984). 
The letters X, Y and Z are assigned according to m = 0, 1 and 2, respectively, where m 
is the azimuthal constant which appears in the boundary condition. Superscripts A, C, H 
and M indicate the relation with the appropriate resistance tensor. The form taken by tensors 

Table 1. Ellipsoidal constants in the limit of prolate and oblate spheroidal cases (/3 = y for prolate spheroids 
and fl = ct for oblate spheroids) 

Prolate spheroids (a > b = c) Oblate spheroids (a = b > c) 

a2(1-e2)log( l+e I 
Xo -- e ~1 - e / 

(l-e2), [l+e~ 2(1 - e  2) 
Cto = 7 1 o g l - ~ _ e ]  e2 

")t 0 m 

4 = 

%= 

1 (l-e2) 1 [l+e~ 
e 2 ~ °g/-~-e ] 

1 5e 2- 3 3(1-e2) 1 [1 + e~/ 

1 a 3 2 l + e  

3-e 2 (l-e2) (e:+ 3), [l+e~ 

yg'= 

/1V-f~-e~ 
x0 = 2°2 e 

vT-5-e2 _d 1VT~-e~ (1 - e~) 
7 cot e2 

2 2 ~  _ , [ ~  
7 .ot F - 7 1  

4 = o21 e' 7 c o t -  

1 /(1-e2)(e2-3) 3 1VT~-e 2 _1[ 1V'~-~-e2Xl 

3(1-e 2) (3-2e 2 ) ~  _t[ l~ - e2~  
4'  = - e--r- + ; ;  cot [ - 7 - )  

l 

( l - e  2) (3-2e 2) (3-4e2) 1V'l~-e 2 _l[ 1 ~ -  e2 / 
y~r 4e 4 4# .cot ~ e ]  

f These steps are omitted here but are available from the author. 
:~ MACSYMA was developed by the Mathlab group, MIT, under NASA Grant NSG 1323, ONR Grant 

N00014-77-C-0641, DOE Grant ET-78-C-02-4687 and U.S. Air Force Grant F49620-79-C-020. 
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Table 2. The resistance functions for oblate and prolate spheroids (scaled to the spherical result), 
as a function of e, the eccentricity of the generating ellipse. The constants a~(e), a2(e), y(e) and y'(e) 

are as in Chwang & Wu (1975). Functions marked (*) and (t) are found in Happel & Brenner (1973) and 
Chwang & Wu (1975), respectively 

F, = 6~'v.a [X"d,d: + r.,(8,,. - d,d:)} (U o - U)~ 

3 I + 8rrp.a Y~(6utd k + ¢,kldy)dtE:k 

d~=~, = ~a,8,,a~ + a,8,,a~ + a,8,~a, + d,~,~a,-  4a, a,a,a,)  

- d,8,,d~ - d,8,,a~ - d,O,~a,- d,8,~a, + d~,,d,  akd,) 

Resistance functions for oblate spheroids 

X A = 

yA = 

XC= 

y C  

y H  

X M 

8 e 3 [  2 (2e2-1 )co t -m( - - -~ )+  2e 

8e3I(2e2 + 1 ) c o t - ~ ( - - - ~ )  - e/VTS'~-e 2 

e3 cot-~ - -  - e 

e (2-e2)[e l~/~-e 2 - (1-2e 2) cot -1 

l" 

45 ~--~e (3-2e 2) cot -t - 3 e l'~/T~-e 2 

yu = 2e'5 e(lq-e2)-  V1-e2  co t - ' [ - - - -~ )  

Z ' =  5e [3cot ( e ) ( 2 e  3e )~ l  e 1 

Resistance functions for prolate spheroids 

--1 

(*) 

- 1  

(*) 

- I  

. , c o  

XA= ~ea~(e)= ~e3I-2e+ (l+e2)log(~-~)l- '  (*,t) 

YA=~ect2(e)=--~e312e+(3e2-1)log(ll+-~_ee)l-I (*,,) 

X c = ~e'y(e) = e3(l-e 2) 2e - (1-e2)log _ (t) 
(continued) 
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Table 2 (continued) 

= ~e y C e )  = + (t) 

[+ = _3e54 + (l+e2)log 

/I >( 2e(2e2-3) + 3(1-e2)log _ -2e + (l+e2)log _ 
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Table 3. Asymptotic behavior of the spheroidal resistance functions in the limit of spheres, needles and disks. 
These formulae were derived by using MACSYMA, a symbolic manipulation language 

Asymptotic behavior of oblate functions 

As e ~ 0 As e ~ 1 ¢ = %/1-e 2 

XA (1 l e 2 _  31 4~ = - -i-~e ] 

.=(, 79++/ 
1400 ] 

XC (1 _ 3 e 2 _  99 4 ~ =  -i-~e ] 

39 4~ 

yH = 0 + ~e2(l _ l e 2  _ l - ~ e  1 3 1  ,,~ 

+,+:(,_ 9++_ 

5 e2 95 ,,'~ 
z,,, = (l - lq - i-q~e I 

16(1 8 (15~_.2 --_128) 2/ 
97r~ + 3- '~ e 1811" 2 ] 

4(1 _++3+,) -I- q- - - e  2 
¢r 2'n "2 

(128_9¢r2) 2 ~ 8 1+_8,+ , ,  ~ ' )  

5--~1 + 2 ,  + (3¢r2120),2) 

1~--~1 16 (512-45"tr 2) 2~ 

As e --' 0 

Asymptotic behavior of prolate functions 
As e 41 

17 + 
X A = l - ~ e  2 -1 -~e  

yA = 1 - 3e2 - 7005--~7 e~ 

6e 2 27 
XC= 1 - T + 1--~e+ 

MP 12:3-L 

4 ( 8 L , -  6)~ 2 
X d _ - -  

6L,-3 12L, 2 - 12L,+3 

8 4E 2 
yA - -  _ _  

6L, + 3 12L2+12L,+3 

(2L, - 2)c  4 
X c = 0 + ~2 + 

(continued) 
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18e4 
y c =  1 - e2 + 175 

y n =  _~e 2 + ~ e  4 

X U =  1 - ~ e 2 + 4 ~ '  

13 2 4 4 4  r~= l - ~ e  +7-~e 

8e2 + 17 4 
Z u =  1 - ~ T - ~ e  

Table 3 (continued) 
2 E 2 I v - - - - +  

6L,-3 12L2,- 12L,+ 3 

yn 2 (8L,-5)¢ 2 - - +  
6 L , - 3  12L,L 12L,+3 

4 (24L, - 26)¢ 2 
X M _ m 

30L.-45 60L 2-180L,+ 135 

2 (16L,2-32L.+ 13)~ 2 
IOL, -5  20L~-20L ,+5 

z"=o+~+ ~, 

S and C in table 2 is simply the decomposition of the translation and rotation problems 
into motions parallel and perpendicular to the axis of symmetry. The form taken by M is 
also a consequence of the particle symmetry. Finally, as a consequence of the Lorentz 
reciprocal theorem, y n  appears both as the torque on a spheroid in a rate-of-strain field 
and also as the stresslet on a rotating spheroid as shown by Hinch (1972). 

The exact and asymptotic formulae for the resistance functions are plotted in figures 
4(a-h) and 5(a-h), from which it is apparent that the asymptotic forms are accurate over 
a wide range of aspect ratios. Rather curiously, for a flat disk, all three torque functions, 
X c, y c  and y s  are equal (and nonzero) so that C becomes isotropic and 

Hmi j ( C -  I )mn ttnkl reduces to 4 zr a3 y Hd ~l 

in [3.9], the Faxen law for the stresslet on a torque-free spheroid. 
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Figure 4. The resistance functions for oblate spheroids, scaled by the results for spheres. The 
dashed curves are the asymptotic forms of table 3.a. Force/translation (parallel to axis) function 
X A. b. Force translation (perpendicular to axis) function yA. c.Torque/rotation (parallel to axis) 

function X c. d. Torque/rotation (perpendicular to axis) function yc. e. Torque/rate-of-strain 
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Figures 5(c-e). 
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Figures 5(f-h). 

Figure 5. The resistance for prolate spheroids, scaled by the results for spheres. The dashed 
curves are the asymptotic forms of table 3. a. Force/translation (parallel to axis) function X A. b. 
Force/translation(perpendicular to axis) function yA c.Torque/rotation (parallel to axis) function 
X c. d. Torque/rotation (perpendicular to axis) function yc. e.Torque/rate-of-strain function yx. 

f. Stresslet/rate-of-strain (axisymmetric straining) function X M. g. Stresslet/rate-of-strain 
(hyperbolic straining) function yM. h. Stresslet/rate-of-strain (hyperbolic straining) function Z M. 




